fsr – BabelTechReviews https://babeltechreviews.com Tech News & Reviews Tue, 28 Jun 2022 06:33:39 +0000 en-US hourly 1 https://wordpress.org/?v=6.6.1 https://babeltechreviews.com/wp-content/uploads/2023/03/BTR-logo-blue-square.svg fsr – BabelTechReviews https://babeltechreviews.com 32 32 LIVA One A300 Mini-PC – Is FSR enough for Ryzen 5600G 1080P Gaming? https://babeltechreviews.com/liva-one-a300-mini-pc-is-fsr-enough-for-ryzen-5600g-1080p-gaming/ Tue, 28 Jun 2022 06:33:39 +0000 /?p=27824 Read more]]> Is FSR Enough for Entry-Level 1080P Gaming Performance on the LIVA One A300 Ryzen 5 5600G Mini-PC ?

There is a very cool aspect to Small Form Factor (SFF) mini-PCs where a notebook or a desktop just won’t do. Although small book-sized PCs are capable in every area of computing, they have always been weak in gaming. Although it is not advertised for gaming, ECS sent us a LIVA One A300 barebones PC that we equipped with a budget-friendly Ryzen 5 5600G APU, and we benchmarked it with 40 games, workstation, and creative applications to see if it is a capable PC that is also acceptible for entry-level 1080P gaming.

The tiny LIVA One A300 is perfect for multitasking on up to 3 displays. Here are 4K and 1080P displays.

The 205 x 176 x 33 mm (8.07″ x 6.93″ x 1.3″) LIVA One A300 supports AMD Ryzen & Athlon Processors up to 65W with an ECS custom mini-ITX A300 SF110 Socket AM4 motherboard. It will support dual-core Athlons all the way to the 8-core/16 thread Ryzen 5 5700G as well as 2x32GB SO-DIMM DDR4 3200MHz, a 2.5″ SATA HDD/SSD, plus a M.2 2280 SATA/PCIe x 4 Gen 3 SSD.

Since we wanted a budget gaming build, we picked the 6-core/12 thread Ryzen 5 5600G ($169) which uses the same but slightly cut down Radeon Vega 7 integrated graphics. It is only about 5% slower in gaming than the 8-core/16 thread Ryzen 7 5700G thus saving $100 on the APU. We equipped our build with a fast (3,400/3,000MBps) 1TB PCIe T-Force Cardea IOPs NVMe SSD ($99), and 2x8GB Samsung SO-DIMM DDR4 3200MHz ($58.00) which is sufficient for an under $550/$600 1080P gaming build with the LIVA One A300 at $200 ($250 MSR) which was the price at Newegg until it sold out.

Since inflation is pushing prices higher, we want to see if a small form factor PC is a good investment and also if it is capable of entry-level 1080P gaming. The only choice is AMD as Intel’s integrated CPU graphics are unable to deliver an acceptible 1080P gaming experience except for very old or very simple games. However, modern games are becoming more and more demanding and the Vega 7 integrated graphics are rather long in the tooth having been introduced 5 years ago.

LIVA One A300 Features & Specifications

From the ECS Liva One A300 specification page:

  • PLATFORM – Support AMD Ryzen™ & Athlon™ Processors with Socket AM4
  • MEMORY – Support 2 x SO-DIMM DDR4 3200MHz, up to 64GB (vary depending on CPU)
  • STORAGE DEVICES
    1 x 2.5″ SATA HDD/ SSD
    1 x M.2 2280 SATA / PCIe x 4 Gen 3 SSD
  • AUDIO
    1 x Combo Jack
    1 x MIC-IN
  • NETWORKING – 1 x 2.5 Gigabit LAN
  • USB
    2 x USB 3.2 Gen 2×1 Type C, 2 x USB 3.2 Gen 1×1 (FRONT I/O)
    2 x USB 3.2 Gen 1×1, 2 x USB 2.0 (REAR I/O)
  • VIDEO OUTPUT
    1 x HDMI, 4K@60Hz
    1 x DisplayPort, 4K@60Hz
    1 x VGA
  • WIRELESS
    1 x M.2 2230 WLAN 802.11ac
    1 x M.2 2230 WLAN 802.11ax (Optional)
  • POWER
    1 x DC-in
    TDP 35W: 19V / 90W
    TDP 65W: 19V / 120W
  • DIMENSIONS (MM) – 205 x 176 x 33 mm
  • OS SUPPORT – Windows 10 & Windows 11

The Test Bed

BTR’s test bed consists of 40 games and 5 synthetic game benchmarks at 1920×1080 as well as SPEC, workstation, CPU, memory, and GPGPU benchmarks. Our latest games include Sniper Elite 5, Total War: Warhammer III, God of War, Ghostwire: Tokyo, Elden Ring, Dying Light 2, DEATHLOOP, and CoD: Vanguard.

The platform that we compare the LIVA One A300 with in creative and workstation tasks is the much more powerful and six-times-more-expensive PCGz Blue Elixir desktop using Intel Core i7-12700KF, an EVGA RTX 3080 FTW video card, and 2x16GB G.SKILL Trident Z 3600MHz DDR4 on an ASUS TUF Gaming H670-PRO WIFI D4 motherboard.

We realize that this is a very unfair comparison but we don’t have another CPU platform available – except a 12900K/DDR5 PC. At the least, it will give a baseline comparison that sets relative value in this David versus Goliath contest.

Why Choose a SFF PC?

The main reason to pick a small PC is for its small footprint and minimal energy usage compared with a full-sized desktop PC. Gamers and creators may love gaming and creation but perhaps not the large amount of space a typical desktop PC requires. A large mid-tower tends to take over an entire desk, and moving it to the floor makes it susceptable to damage from being kicked, not to mention its port accessibility becomes problematic. Mini SFF PCs like the A300 take up no more room than a typical book and can even be mounted on the back of a monitor and its ports are always within arm’s reach. It is also much easier to travel with a SFF PC compared with packing a desktop.

When it comes to using a PC to render video, produce audio, create, do workstation tasks, stream, and more, notebooks can’t compare to an SFF PC. A notebook generally uses a small built-in display which is inferior to the many choices afforded by picking from a multitude of desktop monitors. In addition, a notebook is always a compromise between typing on it and screen viewing while the desktop display and the keyboard can each be placed at their ideal height and distance.

All-in-one notebooks are often plagued by poor cooling with accompanying CPU throttling, loud fans, difficult to upgrade components, and poor battery life. On the other hand, a full-size desktop is bulky and lacks mobility but makes up for it with increased performance and its ease of upgrading. A SFF Mini PC can deliver the best of both worlds – CPU performance that is often on par with big desktop PCs and stronger than most notebooks with similar components. Professional content creators generally prefer a desktop over a notebook for higher performance using the best display possible. Quiet noise levels are also important as SFF systems are typically placed at the desk level and are generally quieter than notebooks which are very cramped and run hot.

The issue for a gamer is that the A300 does not have room for a dedicated graphics card, so all of the video performance depends on the Ryzen 5 5600G’s integrated Radeon Vega 7 graphics. These are considered insufficient to power modern games at 1080P/Low above 30 FPS for even entry level PC gaming. Fortunately, AMD and Nvidia both offer upscaling options to improve performance without destroying image quality.

FSR and Upscaling to the Rescue?

AMD has recently introduced FidelityFX Super Resolution (FSR) which is their answer to NVIDIA’s DLSS. For this review, we used Performance mode which uses a scaling factor of 2X. In a few cases, we tested Balanced and Ultra Performance modes.

FidelityFX Super Resolution (FSR)

Source: AMD

FSR improves performance by first rendering frames at a lower resolution and then by using an open-source spatial upscaling algorithm with a sharpening filter in an attempt to make the game look nearly as good as at native resolution. FSR is basically a post-process shader which makes it easy for game developers to implement across all graphics cards and not just for Radeons. So far, there are 110+ available and upcoming games supporting FSR 1.0 and FSR 2.0 and we have tested thirteen games that use FSR for this review.

FSR is far more than a standard Lanczos implementation plus sharpening and it brings good value for higher “free” performance with a small hit to visuals. However, AMD recommends using Quality or Balanced FSR modes and that Performance mode should only be selected in situations where “needing additional performance is critical.” Using an APU for 1080P gaming definitely meets that description, and we were surprised that the Low visuals using Performance FSR were (barely) acceptible but far better than puke-inducing low framerates with higher fidelity.

Recently AMD has released FSR 2.0 which we benchmarked using DEATHLOOP and God of War for this review.

By comparing FSR 2.0 with 1.0, we were pleasantly surprised to see a large IQ improvement of FSR 2.0 over the original. Unfortunately, Performance FSR 2.0 still takes a hit to the visuals but the framerate increase is solid.

Next let’s take a closer look at the LIVA One A300.

A Closer Look – The Unboxing, Build & BIOS

The LIVA One A300 comes in a small box as a barebones system.

The A300 is packed in a sturdy box advertising it as an ultra-powerful mini PC .

The A300’s features and support are listed on a side panel.

Opening the box, we see the case and a quick start guide.

Removing the case, we see the rest of the contents include a 19V/120W power adapter and power cords, an APU cooler, necessary screws, and a choice of using a VESA mount or a stand.

The front of the LIVA One A300 has a power button, two USB 3.2 Gen 1×1 and two Gen 2×1 Type C connections as well as headphone/combo and microphone inputs.

The rear of the A300 has two additional USB 3.2 Gen 1×1 and two USB 2.0 ports plus a VGA/COM, HDMI 2.0, and two DisplayPort connectors (one of which is covered). The power connector and 2.5 Gigabit Ethernet connector is also on the back along with a Kensington lock. If you prefer Wi-Fi, you can use a 802.11 ac, 1×1, BT4.2 internal card.

The CPU cooler comes with thermal interface material installed for the APU as well as for the VRMs. You will need to supply your own external storage via USB or use an internal 2.5″ SATA SSD or HDD and/or a M.2 2280 PCIe 3.0 SSD.

The top of the case is well ventillated and there is a screen covering the openings.

The bottom of the unit has 4 rubber feet and it can either lay flat or be set up vertically by using a stand.

Building the PC

The LIVA One A300 is extremely easy to build and can be fully assembled in well under 30 minutes.

We picked a Ryzen 5 six core/12 thread 5600G from Amazon for $168.99 (at the time) as the best bang for buck for a budget gaming build. The Liva One A300 supports the eight core/16 thread 5700G for $100 more, but its Radeon 7 Vega graphics is only about 5% faster. Those wishing to use the A300 for creative or workstation purposes will want the fastest APU.

We picked Samsung 2 x 8GB DDR4 3200MHz PC4-25600 SODIMM Laptop RAM Memory Modules for $27.98 each. 16GB is generally enough for 1080P/Low gaming although creators or workstation users may want the full 64GB RAM that the A300 supports.

We picked the memory and the CPU from the ECS QVL (qualified vendor’s list) but decided to use our own NVMe SSDs. We picked the fastest PCIe 3.0 SSD we had using a 1TB NVMe T-Force Cardea IOPS SSD (3400MBps Read/3000MBps Write) for C: Drive as well as a 512MB T-Force Vulcan SATA III SSD for additional storage.

The Ryzen 5 5600G comes with a cooler, but we put it away and used the ECS A300 cooler which also cools the VRAM.

We followed the Quick Guide and opening the cover is a matter of removing a thumbscrew on the back of the case and sliding the motherboard out of it.

Step one is to carefully drop the 5600G APU into the motherboard making sure to align the arrow on the motherboard with the arrow on the APU corner and then to lock down the lever.

We did not use a Wi-Fi card as we prefer to use an Ethernet cable or a USB Wi-Fi adapter.

To install a PCIe NVMe SSD, the hard drive (HDD) tray first needs to be removed.

The NVMe SSD locks down easily with a lever which is very convenient. We used a Cardea Ceramic heatsink for the IOPS SSD since it has superb cooling charactistics. After the SSD is installed, the SSD/HDD tray needs to be reinstalled.

Memory is next and it clips in the same way as a notebook SO-DIMM.

The cooler is next. The VRAM thermal interface plastic coverings need to be removed and then the cooler is carefully placed on over the APU/VRAMs and the four screws are tightened down in the order indicated on the Quick Guide and also on the screws.

It’s time to slide the cover back on.

The ventillation holes are protected from dust intake by a sceen. Now it’s time to tighten down the thumbscrew and add a stand (for vertical builds).

It’s time to plug in the mouse, keyboard, display, and ethernet cable – and turn it on.

Let’s check out the BIOS.

Navigating the BIOS

The ECS BIOS is very easy to navigate but there are few options for performance enhancements.

The BIOS screen gives the PC status and fan control, but the advanced screens are where the options are.

The Main screen gives options for changing the language, date, and time.

Advanced offers few CPU options, and the Chipset screen shows the SATA and NVMe drives status with no real options so we move on to the MBIX screen which surprisingly does offer some memory performance enhancing options.

Unlike the CPU or graphics, the memory can be overclocked. From Auto, we set the memory to 3200MHz and did not try for 3334MHz or higher or attempt to adjust the timings which can yield some extra performance. An enthusiast will probably want to tweak these options. We didn’t see any other performance-enhancing options for gaming such as enabling ResizeableBar.

The final options screen before Exit is the Boot menu.

We used the boot menu to first boot from a flash drive to install Windows 10, and after it was fully set up, we set the A300 to boot from the 1TB NVMe SSD and used the 512GB SATA III drive for storage along with our 4TB external T-Force M.2 Type C SSD.

Let’s check out its performance after we look over our test configuration and more on the next page.

Test Configuration – Hardware

LIVA One A300

  • ECS LIVA One A300 barebones with custom mini-itx motherboard (AM4 chipset, latest BIOS, PCIe 3.0, DDR4)
  • Ryzen 5 5600G APU (stock settings/APU Radeon 7 Graphics).
  • Samsung 2x8GB DDR4 3200MHz PC4-25600 (1.2V 1Rx8 260-Pin SODIMM Laptop RAM Memory Module M471A1K43DB1-CWE)
  • T-FORCE CARDEA IOPS 1TB M.2 NVMe PCIe 3.0 SSD, supplied by TeamGroup
  • T-FORCE M200 4TB Portable Gen 2 x2 USB 3.2 Type C SSD, supplied by TeamGroup
  • ANNE PRO 2, 60% Wired/Wireless Mechanical Keyboard (Gateron Brown Switch/Black Case)
  • Starlink Ethernet
  • ASUS Chakram Wireless Gaming mouse, supplied by ASUS
  • Corsair mousepad

PC Gamerz Hawaii Blue Elixir

  • Intel Core i7-12700KF (HyperThreading/Turbo boost On) (All listed Blue Elixir hardware except the portable SSD supplied by PC GamerZ Hawaii)
  • ASUS TUF Gaming H670-PRO WIFI D4 (Intel H670 chipset, latest BIOS, PCIe 5.0/5.0/3.0/3.1/3.2 specification, CrossFire/SLI 8x+8x)
  • EVGA RTX 3080 FTW video card
  • G.SKILL Trident Z 16GB DDR4 (2x16GB, dual channel at 3600MHz)
  • Crucial P2 1TB NVMe SSD PCIe 3.0 (2400MBps/1900MBps Read/Write) for C: drive
  • The T-FORCE M200 4TB USB 3.2 Gen2x2 Type-C Portable SSD (supplied by Team Group for game storage)
  • EVGA 850B5, 850W Bronze PSU
  • ACER (LC27G75TQSNXZA) 27? 1920×1080/165Hz monitor
  • Lian-Li Galahad 360 AIO Cooler
  • CoolerMaster TD500 Mesh White

Test Configuration – Software

  • Adrenalin 22.5.2 / GeForce 512.77
  • Stock settings, Vsync off.
  • All settings (Low/Lowest/minimum/FSR) enabled as noted in games on the charts
  • Highest quality sound (stereo) used in all games
  • All games have been patched to their latest versions
  • Gaming results show average frame rates in bold including minimum frame rates (1% lows/99 percentiles) shown on the chart next to the averages in a smaller italics font where higher is better.
  • Windows 10 Pro edition; latest updates. DX11 titles are run under the DX11 render path. DX12 titles are generally run under DX12, and multiple games use the Vulkan API.
  • Latest DirectX

40 Games

Vulkan

  • Sniper Elite 5
  • DOOM Eternal
  • Wolfenstein Youngblood
  • Red Dead Redemption 2
  • Ghost Recon: Breakpoint
  • World War Z
  • Strange Brigade
  • Rainbow 6 Siege

DX12

  • God of War
  • Ghostwire: Tokyo
  • Dying Light 2
  • Forza Horizon 5
  • Call of Duty: Vanguard
  • Guardians of the Galaxy
  • Far Cry 6
  • DEATHLOOP
  • Chernobylite
  • Resident Evil Village
  • Metro Exodus Enhanced Edition
  • Hitman 3
  • Godfall
  • DiRT 5
  • Assassin’s Creed: Valhalla
  • Cyberpunk 2077
  • Watch Dogs: Legion
  • Horizon Zero Dawn
  • Death Stranding
  • F1 2021
  • Borderlands 3
  • Tom Clancy’s The Division 2
  • Civilization VI – Gathering Storm Expansion
  • Battlefield V
  • Shadow of the Tomb Raider

DX11

  • Total War: Warhammer III
  • Days Gone
  • Crysis Remastered
  • Destiny 2 Shadowkeep
  • Total War: Three Kingdoms
  • Overwatch
  • Grand Theft Auto V

Synthetic

  • TimeSpy (DX12)
  • 3DMark FireStrike
  • Superposition
  • VRMark Orange Room
  • Cinebench
  • GeekBench
  • AIDA64 CPU, cache & memory, and GPGPU benchmarks
  • Blender 3.01 benchmark
  • Sandra 2021 CPU Benchmarks
  • SPECviewperf 2020
  • SPEC Workstation

Next we look at overclocking, temperatures, and noise.

Overclocking, temperatures, and noise

Only the memory of the LIVA One A300 may be overclocked although we didn’t test it. Neither the CPU nor the Radeon Graphics could be overclocked. The CPU temperatures generally remained cool hitting 71C during Cinebench and maxing out at 86C during the SpecWorkstation demanding Blender benchmarks.

At no point did the fan noise become obtrusive. The only time we could hear it was at startup for a few seconds when it spins up to 100% before Windows sets up.

Let’s head to the performance charts to see how capable the LIVA One A300 is as a creative/workstation PC and if it is acceptable for 1080P entry level gaming.

Performance Summary Charts

Here are the performance results of 40 games and four synthetic tests using generally the lowest settings at 1080P. All gaming results show average framerates in bold text, and higher is better. Minimum framerates (1% lows/99-percentiles) are next to the averages in italics and in a slightly smaller font. The thirteen games that use FSR Performance (or Ultra Performance or Balanced as noted) are next to the non-upscaled results.

GTA V, Overwatch, CIV VI, F1 2021, Forza Horizon 5, World War Z, and Rainbow 6 Siege manage to run acceptibly or decently on Low settings at 1080P. A total of seventeen games manage to stay above 30 FPS 1% lows and a couple of others get close. FSR adds another eight or nine games with several more reaching close to the 30FPS minimum. Perhaps a total of 11 games play acceptibly well enough on 1080P/Low enough to consider raising some individual settings.

Performance FSR definitely does its job of improving framerates although it impacts visuals, but it is much better than putting up with sickness-inducing low framerates and lag. In a few games like Tokyo: Ghostwire, it just adds blur to the already low visuals. Some games look better than others, but if we had to game on a 5600G, we’d definitely use FSR.

Let’s look at non-gaming applications next to see if the LIVA One A300 is a solid performer in creative/workstation/pro tasks starting with Blender benchmarks.

Blender 3.01 Benchmark

Blender is a very popular open source 3D content creation suite. It supports every aspect of 3D development with a complete range of tools for professional 3D creation.

We benchmarked all three Open Data Blender.org benchmarks which combines both CPU and GPU performance by measuring samples per second in rendering production files.

For the following chart, higher is better as the benchmark renders a scene multiple times and gives the results as samples per second.

The A100’s 5600G APU performs decently in Blender but it is no match for the ultra-powerful RTX 3080 FTW combined with a 12700KF. In any graphics tests where a video card is used, we will see a huge performance disparity. CPU benchmarks should tell a different story.

Next, we move on to AIDA64 CPU, Cache & Memory, and GPGPU benchmarks.

AIDA64 v6.70

AIDA64 is an important industry tool for benchmarkers. Its GPGPU benchmarks measure performance and give scores to compare against other popular video cards while it’s CPU benchmarks compare relative performance of processors.

AIDA64’s benchmark code methods are written in Assembly language, and they are well-optimized for every popular AMD, Intel, NVIDIA and VIA processor by utilizing the appropriate instruction set extensions. We use the Engineer’s full version of AIDA64 courtesy of FinalWire. AIDA64 is free to to try and use for 30 days.

CPU/FPU Benchmark Results

CPU results are summarized below in two charts for comparison.

GPGPU Benchmark

Here is the comparison summarized between the LIVA One A300 and the Blue Elixir 12700KF/RTX 3080 FTW PC.

Cache & Memory Benchmarks

Here is the summary chart.

For workstation, creative, and professional applications using the CPU or memory, the Ryzen 5600G performs admirably as a solid performer; it’s weakness is its Vega 7 graphics. In many of AIDA64’s CPU benchmarks, the Ryzen 5600G outperformed and outranked the former Intel 6-core flagship, the i7-8700K.

So let’s look at Sandra 2021 next.

SiSoft Sandra 2021

To see where the CPU, GPU, and motherboard performance results differ, there is no better tool than SiSoft’s Sandra 2021. SiSoftware SANDRA (the System ANalyser, Diagnostic and Reporting Assistant) is a excellent information & diagnostic utility in a complete package. It is able to provide all the information about your hardware, software, and other devices for diagnosis and for benchmarking. Sandra is derived from a Greek name that implies “defender” or “helper”.

There are several versions of Sandra, including a free version of Sandra Lite that anyone can download and use. Sandra 2021 is the latest version, and we are using the full engineer suite courtesy of SiSoft. Sandra 2021 features continuous multiple monthly incremental improvements over earlier versions of Sandra. It will benchmark and analyze all of the important PC subsystems and even rank your PC while giving recommendations for improvement.

We ran the latest version of Sandra’s intensive Processor benchmarks and summarize the overall results below.

In Sandra’s synthetic CPU benchmarks, the $600 LIVA One A300 scores over half the $3500 PC results which also use CUDA and its discrete GPU. It also ranks the 5600G higher than many older Ryzen and Intel CPUs like the i7-8700K.

So let’s look at Cinebench which is a pure CPU benchmark focusing on single- and mult-core results.

Cinebench

Cinebench is based on MAXON’s professional 3D content creation suite, Cinema 4D. This latest R23 version of Cinebench can test up to 64 processor threads accurately and automatically. It is an excellent tool to compare CPU/memory performance and higher is better.

Cinebench’s Multi-Core benchmark will stress a CPU reasonably well over its 10-minute run and will show any weaknesses in CPU cooling. This is the test where we discovered that the Blue Elixir’s 12700K hit nearly 100C on Core 5 and lead us to conclude that the wrong LGA 1151 backplate was used by the PCGz builders instead of LGA 1700.

Here is the summary chart.

Of course the 12-core/20-thread 12700KF beats the 6-core/12 thread 5600G in Cinebench in the multi-core test. However, the A300 has nothing to be ashamed of turning in a very strong single core and decent multi-core performance. Next we benchmark using GeekBench which measures CPU and GPU performance.

GeekBench

GeekBench is an excellent CPU/GPU benchmarking program which runs a series of tests and times how long the processor takes to complete its tasks.

Single Core Performance

Here is the A300 5600G single core performance.

Next we check multi-core.

Multi Core Performance

Now 5600G CPU multi core performance.

Next we test the A300 using OpenCL and Vulcan using GeekBench graphics-heavy benchmarks.

Open CL and Vulcan

First, OpenCL performance.

Next we test the LIVA One A300 using Vulcan.

The summary charts below show the comparative performance scores.

Again, the A300 5600G’s single core performance is excellent and the multi-core is also very solid. However, as expected the GPU benches are weak if compared with a fast discrete video card.

Next up, SPECworkstation.

SPECworkstation3 (3.0.4) Benchmarks

All the SPECworkstation3 benchmarks are based on professional applications, most of which are in the CAD/CAM or media and entertainment fields. All of these benchmarks are free except to vendors of computer-related products and/or services. The most comprehensive workstation benchmark is SPECworkstation3. It’s a free-standing benchmark which does not require ancillary software. It measures GPU, CPU, storage and all other major aspects of workstation performance based on actual applications and representative workloads.

SPECworkstation benchmarks are very demanding and all benchmarks were tested in an official run.
Here are the SPECworkstation Raw Scores which give the details.
We see the same thing repeated in all of the synthetic tests – the LIVA One A300 Ryzen 5 5600G performs brilliantly in CPU-heavy benchmarks while falling short in GPU-heavy benching compared with a much more powerful and expensive PC.
Now, let’s look at a GPU-heavy SPEC benching suite, SPECviewperf 2020.

SPECviewperf 2020 GPU Benches

The SPEC Graphics Performance Characterization Group (SPECgpc) released a 2020 version of its SPECviewperf benchmark that features updated viewsets, new models, support for up to 4K display resolutions, and improved set-up and results management. We use 1900×1060 display resolution.

Here are SPECviewperf 2020 benchmarks summarized in the chart below.

No surprises – the six-times more expensive PC GamerZ PC is faster because of the higher core count of the 12700K but especially because of the RTX 3080 FTW.

The decision to buy a new PC should be based on the workflow and requirements of each user as well as their budget. Time is money depending on how these apps are used. However, the target demographic for the LIVA One A300 mini-PC is creative and workstation uses while the GamerZ Blue Elixir targets 1080P and 1440P gaming. As value goes, the A300 provides far more bang-for-buck except for heavy gaming. It would be ideal for anyone needing a small but powerful PC.

Let’s head to our conclusion.

Final Thoughts

We were very impressed with the value of the LIVA One A300 using a Ryzen 5 5600G APU for workstation, multi-tasking, and creative use cases. At around $600 for the parts as tested, it provides superb performance bang for buck when compared – admittedly unfairly – with a desktop PC with a powerful video card that costs six times more. The A300 only falls short in gaming or where graphics intensive tasks are needed.

Let’s sum it up:

The Pros

  • The LIVA One A300 is an excellent SFF value as a barebones mini-PC that can use any 65W Ryzen or Athlon APU
  • Support for up to 2x32GB DDR4 3200MHz
  • Good storage options for NVMe and SATA III SSDs
  • It excels in multi-tasking, creative, and workstation applications.
  • It offers support for 3 displays up to 4K for multasking
  • Its small form factor allows for easy placement while taking up a very small footprint and little energy
  • It runs cool and very quiet
  • Plenty of USB connectors with support for Type C
  • It is fast and easy to build
  • It can handle some 1080P gaming

Cons

  • Gaming and graphics heavy applications are its only weaknesses (and it is not advertised for gaming) but FSR goes a long way to address it

The Verdict:

If a gamer is looking for a solid and handsome SFF barebones mini-PC with a lot of build options, the LIVA One A300 should be considered. It is a solidly-built mini-PC that that can handle heavy CPU workloads for extreme multi-tasking, workstation, and creative needs. It is also suitable for light, eSports, and even some mainstream gaming on Low/1080P.

We really were impressed with the LIVA One A300 and plan to use it as a Plex server. We were also impressed with FSR and especially with FSR 2.0 and the performance increase it provides for games that otherwise could not be played at 1080P.

Stay tuned for Rodrigo’s Adrenalin 22.5.2 Driver Performance Analysis!

Happy Gaming!

]]>
Myst 2021 VR Performance Review Featuring DLSS https://babeltechreviews.com/myst-2021-vr-performance-review-featuring-dlss/ Fri, 24 Sep 2021 13:50:43 +0000 /?p=24946 Read more]]> Myst 2021 VR Performance Review of 9 AMD & NVIDIA Cards using FCAT-VR with the Vive Pro and the Pro 2 Featuring DLSS

Myst (2021), by Cyan Worlds Inc, is the latest remake of the iconic 1990s puzzle-adventure game. Myst was rebuilt to play in PC VR and for flatscreen gamers. Powered by Unreal Engine 4, the pancake game features gorgeous advanced ray traced graphics and support for both AMD FidelityFX Super Resolution (FSR) and NVIDIA Deep Learning Super Sampling (DLSS) technologies to boost performance. Unfortunately, the VR edition does not support ray tracing or FSR, so we will focus on DLSS as the game is especially demanding on the Epic Preset with a Vive Pro/Valve Index class VR headset and much more so with a Pro 2.

We offer a review of Myst‘s PC VR graphics performance using the latest AMD Radeon Software Adrenalin 21.9.2 driver with the RX 6800 XT/RX 6800/6700 XT/RX 6600 XT, and the latest GeForce Game-Ready 472.12 driver with the RTX 3080/3080 Ti/3070/3060 Ti/3060. We will also make suggestions for setting the best balance of visuals to performance for each card.

BTR received a Steam Myst key from NVIDIA. It is available as a $29.99 Steam game that is playable as a pancake game or in VR on multiple HMDs including the Valve Index, Vive HMDs, and Oculus Rift HMDs, but not for WMR like the Reverb G2. This isn’t a game review, but rather we are concentrating on its performance as measured by FCAT-VR using nine video cards on their latest drivers at factory settings.

Here are the cards that we benchmarked Myst with the very latest drivers from NVIDIA (472.12) and from AMD (21.9.2):

  • RTX 3080 Ti (12GB Founders Edition, on loan from NVIDIA)
  • RTX 3080 (8GB Founders Edition, on loan from NVIDIA)
  • RTX 3070 (8GB Founders Edition, on loan from NVIDIA)
  • RTX 3060 Ti (8GB Founders Edition, on loan from NVIDIA)
  • RTX 3060 (12GB Founders Edition, on loan from NVIDIA)
  • RX 6800 XT (16GB Reference Edition, on loan from AMD)
  • RX 6800 (16GB Reference Edition, on loan from AMD)
  • RX 6700 XT (12GB Red Devil, on loan from PowerColor)
  • RX 6600 XT (8GB Red Devil, on loan from PowerColor)

BTR’s testing platform is an Intel Core i9-10900K at 5.0/5.1GHz, an EVGA Z490 FTW motherboard and 16GB of T-Force XTREEM DDR4 at 3866MHz on Windows 10 64-bit Pro Edition. We benchmark using a Vive Pro which gives identical results to the Valve Index as well as using the Pro 2 for our top cards.

Settings

Myst has 4 basic in-game user settings: Low, Medium, High, and Epic Presets. There aren’t a lot of visual differences between Epic and High, but dropping to Medium is noticeable, and Low is rather low.

Settings screenshots are from the flatscreen version

The Supersampling Method in the pancake version allows for either FSR or DLSS, but DLSS is the only option available in the VR game. And there are four levels of DLSS choices: Quality, Balanced, Performance, and Ultra Performance.

  • Quality DLSS is upscaled the least and it offers the highest image quality above the Balanced mode and is indistinguishable from the native resolution.
  • Balanced offers higher performance than Quality and offers a great balance of visuals to performance.
  • The Performance mode offers higher performance than the Balanced mode with only slight visual differences in motion.
  • The Ultra Performance mode offers the highest performance increase but it is upscaled the most.

There are also multiple individual settings that may be changed by the user although we are just concentrating on preset performance.

DLSS versus FSR

AMD does not have a direct competitor to DLSS although they offer FSR which also improves performance.

FSR improves performance by first rendering frames at a lower resolution and then by using an open-source spatial upscaling algorithm with a sharpening filter in an attempt to make the game look nearly as good as at native resolution. NVIDIA’s DLSS is a more mature temporal upscaling solution that uses AI/Deep Learning. With DLSS, data is accumulated from multiple frames and combined into a final image with AI reconstruction running on RTX Tensor cores.

In contrast, FSR is a post-process shader which also makes it easy for game developers to implement across all graphics cards. So far, there are about a dozen pancake games that use it and we have tested three games that use FSR. Although Ultra FSR is not the equal of DLSS – and especially not of DLSS 2.0 Quality which rivals and sometimes improves on the native image – it is still a very solid non-AI/temporal upscaler that provides good performance improvements.

Ultra FSR is more than a standard Lanczos implementation plus sharpening and it brings good value to Radeons and for all video cards for higher “free” performance with a minimal hit to visuals. The issue is that FSR has not been implemented into any VR game yet. We hope that AMD and the Cyan developers will bring native FSR to Myst as they have done for the pancake version since using the OpenVR_FSR mod brings very inconsistent results.

The maximum meaningful resolution for VR is approximately one and a half times the native display resolution of the headset since the runtime warps the image to correct for optics’ warping, and a 1.5x rendered resolution results in pixels matching the native headset resolution at the center of the headset’s viewing area. But for complex games played on demanding headsets (especially like the Reverb G2 or the Vive Pro 2), the render resolution should probably be set lower than 1.5x.

Generally, the render resolution has the biggest impact on a game’s performance so it can consistently render frames at least as fast as the refresh rate of the headset which is usually 90 FPS. The render resolution should be selected to ensure consistently delivered framerates above 90 FPS, and it’s independent of the headset resolution. Of course, a minimum render resolution is needed to deliver a quality VR experience that varies from headset to headset.

DLSS Scaling

There are two scaling stages in the VR pipeline. When both are enabled, they work together to produce the final frame. When NVIDIA DLSS is enabled, it reduces a game’s render resolution by a predetermined scaling factor. Afterward, the driver uses AI to scale the rendered resolution to the original requested runtime. From an example NVIDIA gives, if the requested render resolution is 1848 x 1872 per eye, and DLSS is running in Performance mode, the game will render to 924 x 936 per eye, and DLSS will scale it back to 1848 x 1872.

The VR runtime takes the frame rendered by either the game or generated by DLSS and scales it to approximately 1.5x the native headset resolution to compensate for optics and image warping. This scaling is usually part of the lens distortion compensation. So when DLSS is supported in VR you want to maximize the scaling done by DLSS and minimize the scaling done by the runtime to maximize performance.

Whenever you enable DLSS you change the render resolution of the game and its performance. It’s important to keep this in mind when finding the ideal configuration. NVIDIA gives another example that a configuration that can maintain 90 fps at 982 x 1000 with DLSS off will likely maintain 90 fps at 1424 x 1408 with Quality DLSS, 1720 x 1774 with Balanced DLSS, 1960 x 1984 with Performance DLSS, and 2704 x 2736 with Ultra-performance DLSS. It is up to the end user to determine the best balance of visuals to performance, remembering that 90 FPS is the minimum target framerate.

Performance

Myst has very good to excellent VR visuals, and it generally runs well on BTR’s flagship i9-10900K with a variety of video cards depending on the settings. The map where we had universal issues was in Channelwood where there was considerable microstutter for all cards, and we have concluded that it is not currently representative of the game’s VR performance.

Unfortunately, Myst is very challenging to benchmark in VR because the maps are relatively small requiring a lot of turns, so we use a 60 second benchmark run over one of the more visually demanding maps in the game in the Selentic age.

Myst should not be played with constant reprojection, synthetic frame synthesis, or with Motion Smoothing applied. Continually delivering frames at half the HMD’s optimum rate refresh by using Motion Smoothing tends to cause artifacting and it may even cause some upset or even VR sickness for the gamer.

All nine video cards were tested by FCAT-VR using the in-game presets which include Ultra, High, Medium, and Low. Of course, we did not test a RTX 3080 Ti on Low settings nor did we test a RX 6600 XT on Epic settings, but we tried to keep the settings realistic and close to optimal for each card with a goal of a steady 90 FPS being delivered to the headset without requiring synthetically generated frames.

It is important to remember that BTR’s charts use frametimes in ms where lower is better, but we also compare “unconstrained framerates” which show what a video card could deliver (headroom) if it wasn’t locked to 90 FPS by the HMD. In the case of unconstrained FPS which measures one important performance metric, faster is better. Also, please note that FCAT-VR does not differentiate between dropped and synthesized frames for cards tested with the Pro 2 as it does not use SteamVR’s Motion Smoothing.

Vive Pro at 100% SteamVR render resolution (2016×2240)

Lets start by testing the video cards that appear to run best at Low or Medium settings using the Vive Pro at 100% SteamVR render resolution.

Low/Medium Settings

The first card we test is an RX 6600 XT and is the only card we tested that requires the Low preset. Unfortunately, from our earlier testing, we discovered it is a relatively weak card for VR – unlike the rest of the RX 6000 series. We originally tested Myst with Adrenalin Software 21.8.2 but found that the latest driver, 21.9.2, improves performance so we retested all AMD cards using it.

RX 6600 XT 8GB

Frametimes results are in ms where lower is better.

Here is the frametime plot of the RX 6600 XT comparing Medium with Low settings.

Here are the details.

The RX 6600 XT really struggles at Medium settings delivering 102.60 unconstrained frames, and it requires 1344 (25%) frames to be synthesized while dropping 17 frames and delivering 17 Warp misses.

It does better on Low settings by delivering 112.05 unconstrained frames, dropping 6 frames with 6 Warp misses, and requiring 248 (5%) to be synthesized. However, at even the Low setting, microstutter is still noticeable. It may be a driver issue exacerbated by the RX 6600 XT’s limited bandwidth when used with a non-Ryzen PC.

Next up we test the RX 6700 XT.

RX 6700 XT

Here is the frametime plot of the RX 6700 XT tested at the High and Low preset.

Frametimes results are in ms where lower is better.

The RX 6700 XT cannot handle either the High or Medium preset without synthesizing frames. Here are the details.

On the High preset, the RX 6700 XT delivers 98.45 unconstrained frames, but it drops 13 frames and delivers 13 Warp misses. In addition, it requires 1540 (28%) frames to be synthesized, and microstutter is evident while playing.

It does better with the Medium preset but our goal is an absolute minimum of delivering 90 FPS, so we had to drop to the Low Preset. On Low it delivered 154.70 unconstrained frames with no dropped frames or Warp misses and it only required 11 frames to be synthesized for a good VR experience. Playing on the Medium preset is a possibility for players who can tolerate synthetically generated frames.

Next we test the cards that can mostly handle High settings.

High Settings

The first High preset card we test is an RTX 3060.

RTX 3060

The RTX 3060 can handle High setting only if DLSS is used. Otherwise it would require using the Low/Medium preset. Here is the frametime plot.

Frametimes results are in ms where lower is better.

Here are the details.

On the High preset without DLSS, the RTX 3060 delivers 69.54 unconstrained frames, and although it drops no frames nor delivers any Warp misses, it requires 2631 (50%) of its frames be synthesized. However, even without DLSS, microstutter is not evident while playing, unlike with the RX 6600 XT.

The RTX 3060 does much better with 105.61 unconstrained frames on the High preset with Balanced DLSS – with no dropped frames or Warp misses but with 219 (4%) synthetic frames. It is very playable and the Balanced DLSS image quality is very good.

However, since our goal is a minimum of delivering 90 FPS without synthetic frames, we also tested Performance DLSS. On the High preset it delivered 116.22 unconstrained frames with no dropped frames or Warp misses and it only required 2 frames to be synthesized for a very good VR experience.

It should be noted that Performance DLSS compromises VR visuals very slightly, so High/Balanced DLSS is a real possibility for players who don’t mind if some frames are synthesized or if they are willing to drop some individual settings.

Next we check the performance of the RX 6800.

RX 6800

Frametimes results are in ms where lower is better.

Here is the frametime plot of the RX 6800 run at the Epic and High preset.

Here are the details.

The RX 6800 cannot handle the Epic preset as it delivers 92.55 unconstrained frames but it drops 17 frames and delivers 17 Warp misses and it requires 2222 (41%) of its frames to be synthesized, and microstutter is evident.

Myst gameplay becomes smooth using a RX 6800 at the High preset, delivering 127.81 unconstrained frames with no Warp misses or any frames dropped, but it requires 15 synthetic frames.

Next we test the performance of video cards that can play at the High to Epic Preset

High/Epic settings

The first card we test is a RTX 3060 Ti Founders Edition.

RTX 3060 Ti

Frametimes results are in ms where lower is better.

Here is the frametime plot of the RTX 3060 Ti run at the Epic preset with no DLSS, Quality DLSS, and with Balanced DLSS.

Here are the details.

The RTX 3060 Ti struggles at the Epic preset with 82.73 unconstrained FPS, and although it doesn’t drop frames or deliver any Warp misses, it requires 2562 (49%) of its frames to be synthesized. It does much better with Quality DLSS and doesn’t compromise image quality with 108.36 unconstrained FPS, dropping no frames or having any Warp misses, but it still requires 149 frames (8%) to be synthesized.

Using Balanced DLSS on the Epic Preset, the RTX 3060 easily hits its target of a locked-on 90 FPS with 122.61 FPS with one dropped frame, one Warp miss, and 3 synthetic frames. The ‘Balanced’ visuals are still very good although some players may prefer to play on the High preset with Quality DLSS with some synthesized frames.

The next card we test is a RX 6800 XT.

RX 6800 XT

Here is the frametime plot of the RX 6800 XT run at the Epic and High preset.

Frametimes results are in ms where lower is better.

Here are the details.

Using the Epic preset, the RX 6800 XT delivers 107.42 unconstrained FPS with no dropped frames or Warp misses but it requires 314 (6%) of the frames to be synthesized.

Using the High preset, it delivers 154.15 unconstrained FPS, dropping no frames nor having Warp misses but requiring 7 frames to be synthesized. It would be acceptable to play with a mix of mostly Epic settings with a few High settings if the goal is a minimum of 90 FPS with zero synthetic frames.

Next up, the RTX 3070.

RTX 3070

Here is the frametime plot of the RTX 3070 run at the Epic preset.

Frametimes results are in ms where lower is better.

Here are the details.

The RTX 3070 cannot meet our goal of 90 FPS without synthetic frames by using the Epic preset without DLSS. It delivers 99.17 unconstrained FPS with no dropped frames or Warp misses, but it requires 1353 (26%) frames to be synthesized.

Using Epic with Quality DLSS, the RTX 3070 delivers 124.39 unconstrained frames with no dropped frames or Warp misses, but it requires 7 frames to be synthesized. There is no reason not to use Quality DLSS as the image quality is the equivalent of playing without it and the VR experience is excellent.

The next Epic preset card we test is an RTX 3080. But this time, using Quality DLSS, we attempt using the Epic preset with 150% SteamVR render resolution.

The Epic Preset with 150% SteamVR Render Resolution

RTX 3080

Here is the frametime plot of the RTX 3080 run at the Epic preset at 100% SteamVR render resolution, first with no DLSS and then at 150% render resolution with Quality DLSS.

Frametimes results are in ms where lower is better.

Here are the details.

The RTX 3080 is suitable for using with the Epic preset with no DLSS, delivering 117.72 unconstrained FPS with no dropped frames or Warp misses, but it requires 10 frames to be synthesized.

It is not playable without synthesizing mass frames on the Epic preset with 150% render resolution without DLSS but it does great using Quality DLSS. It delivers 119.48 unconstrained FPS only requiring 8 frames to be synthesized and it neither drops frames nor has Warp misses. However, the visuals and clarity become noticeably better using SteamVR’s 150% render resolution with Epic/Quality DLSS than by using Epic at 100% without DLSS.

Next up, the RTX 3080 Ti.

RTX 3080 Ti

Here is the frametime plot of the RTX 3080 Ti run on the Epic preset comparing 100% with 150% SteamVR render resolutions with Quality DLSS on versus off.

Frametimes results are in ms where lower is better.

Here are the details.

The RTX 3080 Ti can easily handle the Epic preset without DLSS at 100% SteamVR render resolution delivering 138.07 unconstrained FPS with no Warp misses or dropped frames, although 4 frames were synthesized. However, increasing the SteamVR render resolution to 150% drops the unconstrained framerate to 100.23 FPS, and without DLSS, it requires 942 (18%) of its frames to be synthesized although again, no frames are dropped.

Using Quality DLSS at 150% render resolution, the RTX 3080 Ti delivers 135.71 unconstrained FPS with no dropped frames or Warp misses, and only 1 frame was synthesized. There is no reason not to use Quality DLSS at 150% render resolution as its Epic preset visuals are far superior to not using DLSS at 100%.

Next we test our two fastest cards, the RTX 3080 and the RTX 3080 Ti with a much more demanding headset, the Vive Pro 2. Please note that FCAT-VR does not distinguish between synthesized and dropped frames using the Pro 2 since it uses the Vive Console’s Motion Compensation (which we do not use) instead of SteamVR’s Motion Smoothing.

Vive Pro at 100% SteamVR render resolution (3184×3184)

High/Epic Presets

RTX 3080

Here is the frametime plot of the RTX 3080 using the Epic preset with the Vive Pro 2. This time we test the Epic and High presets but find that we cannot use Quality DLSS without requiring synthetic frames as the Pro 2’s render resolution is so high.

Frametimes results are in ms where lower is better.

Here are the details.

The RTX 3080 on Epic without DLSS delivers 51.97 unconstrained FPS with 1 Warp miss, and it drops or requires 1914 (43%) frames to be synthesized. Using Performance DLSS which compromises visuals slightly using the same settings, it manages 95.78 unconstrained frames with only 8 dropped or synthesized frames.

Without using DLSS, the RTX 3080 performs better on the High preset over Epic, delivering 83.72 unconstrained FPS, while dropping or synthesizing 1952 (39%) frames and suffering 1 Warp miss. Using the same settings with Balanced DLSS, it gives 97.86 unconstrained FPS with 1 Warp miss, and dropping or synthesizing 10 frames.

It is a toss up between using Epic/Performance DLSS and High/Balanced DLSS. Next we check the performance of the RTX 3080 Ti.

RTX 3080 Ti

Here is the frametime plot of the RTX 3080 Ti using the Pro 2 at 100% SteamVR render resolution.

Frametimes results are in ms where lower is better.

Here are the details.

Although NVIDIA’s top gaming card produces no Warp misses, the RTX 3080 Ti cannot handle the Epic preset without DLSS as it delivers 55.08 unconstrained FPS, and it drops or requires 2049 (45%) frames to be synthesized. Using Quality DLSS, it still falls short of our 90 FPS minimum goal, delivering 91.71 unconstrained FPS but it still drops or synthesizes 656 (13%) frames.

Using the same settings but with Balanced DLSS, the 3080 Ti delivers 98.54 frames with only 8 dropped or synthesized frames. We would suggest playing either Epic/Balanced DLSS or with Quality DLSS and a mix of Epic and High settings to stay above 90 FPS for an awesome visual experience on the Pro 2.

Conclusion

After spending many hours playing and benchmarking Myst 2021 in VR with nine video cards, we have concluded that it is a decently-optimized game that delivers reasonably good performance with very good VR visuals that really draws the player into its world. The map where we had universal issues was in Channelwood where there was considerable microstutter and we have concluded that it’s not representative of the game.

Some of the puzzles are not obvious and they may require a lot of thought – or a walkthrough.

The Radeons that are normally equivalent to their GeForce counterparts in pancake gaming are somewhat held back by microstutter, but far more so by not having a DLSS competitor for VR. All of the competing GeForce cards were able to deliver similar visuals but with much higher performance by using Quality or Balanced DLSS. And using DLSS is the only way to play Myst at 100% SteamVR render resolution with a Pro 2 without synthesizing frames. DLSS works great for the three VR games that we have tested, and we highly recommend its use.

We hope that AMD and the Cyan devs will bring native FSR support to Myst as they have done for the pancake version since using the OpenVR_FSR mod brings inconsistent results. We are still holding out hope since AMD told us, “FSR is not supported with VR in Myst at this time.”

Next up, expect Rodrigo to deliver a brand new 472.12 driver performance analysis shortly. And he is also working on a Myst pancake game performance review while we are working on a budget TeamGroup SATA SSD evaluation. Stay tuned to BTR.

Happy VR Gaming!

]]>
The Red Devil RX 6600 XT takes on the RTX 3060 & RTX 3060 Ti in 32 Games https://babeltechreviews.com/the-red-devil-rx-6600-xt-takes-on-the-rtx-3060/ Wed, 11 Aug 2021 04:44:22 +0000 /?p=24384 Read more]]> The PowerColor Red Devil RX 6600 XT takes on the RTX 3060 & RTX 3060 Ti in 32 Games

The Red Devil RX 6600 XT arrived at BTR for evaluation from PowerColor as a premium and overclocked 8GB vRAM-equipped 128-bit card with no manufacturer recommended (SEP/MSRP) pricing as yet although the base models start at a rather high $379 considering it is targeting 1080P. We have been exhaustively comparing it versus the $329 RTX 3060 EVGA Black 12GB and versus the $399 RTX 3060 Ti 8GB Founders Edition using 32 games, GPGPU, workstation, SPEC, and synthetic benchmarks.

We will also compare the performance of these competing cards with the RX 6600 XT’s bigger brother, the Red Devil RX 6700 XT (the reference card SEP is $479), and also with its predecessor the ASUS TUF Gaming X3 RX 5600 XT (at $309 which is $30 above AMD’s entry-level pricing of $279); and also with the RX 5700 XT Anniversary Edition ($499/$449 reference at launch).

The Red Devil RX 6600 XT is factory clocked higher than the reference specifications using its OC BIOS. While the reference Radeon RX 6600 XT offers a Game clock up to 2359MHz and a Boost clock of 2589MHz, the PowerColor Red Devil game clocks up to 2428MHz and boosts to 2607MHz. It also looks different from older generation classic Red Devils, arriving in a more neutral gray color instead of in all red and black. The Red Devil RX 6600 XT features a RGB mode whose LEDs default to a bright red which may be customized by PowerColor’s DevilZone software.

The Reference and Red Devil RX 6600 XT Features & Specifications

Source: PowerColor

First let’s look at the Red Devil RX 6600 XT specifications:

Additional Information from PowerColor

PowerColor newest 6600 XT Red Devil card, is positioned to compete directly with the custom 3060 premium models.

  • The card has 2 modes, OC and Silent. 145W / 135W Power target. There’s a bios switch on the side of the card. We designed this card to be very quiet, even on performance mode is considerably quieter most silent cards, but we also advise to try the silent mode as it’s truly whisper quiet, with a normal case with a optimal airflow, you most likely see the card run around 1000 Rpms under this mode.
  • The board has 10 Phase VS the 6+2 Phase VRM design on the standard designs meaning is over spec’d in order to deliver the best
    stability and overclock headroom by having such VRM it will run cooler and last longer.
  • DrMos and high-polymer Caps are used on our Design, no compromises.
  • DUAL FAN, at this TDP there is no need of oversized 3 fan coolers, better sized and yet efficient cooling!
  • Our cooler features 2 x 100mm ,all with two ball bearing fans with 4 heat pipes (4X6Φ) across the high density heatsink with large nickel plated base.
  • RGB is enhanced, Red Devil now connects to the motherboard aRGB (5v 3 pin connector) for RGB Sync.
  • Red Devil has Mute fan technology, fans stop under 60c!
  • The ports are LED illuminated. Now you can see in the dark where to plug.
  • The card back plate does not have thermal pads but instead we did cuts across the backplate for the PCB to breath, which under high
    heat scenarios is more beneficial than having thermal pads as the back plate can become a heat trap.
  • Red Devil buyers will be able to join exclusive giveaway as well access to the Devil Club website. A membership club for Devil users only which gives them access to News, Competitions, Downloads and most important instant support via Live chat.

RX 6000 features

Source: AMD

AMD has their own ecosystem for gamers and many unique new features for the Radeon 6000 series. However, the above slide from AMD does not mention two features – the Infinity Cache and Smart Access Memory.

Infinity Cache & Smart Access Memory

AMD’s RDNA 2 architecture includes the Infinity Cache which alters the way data is delivered to GPUs. This global cache allows fast data
access and increases bandwidth. This optimized on-die cache uses 96MB of AMD Infinity Cache delivering up to 2.5x the effective bandwidth compared to 256-bit 12Gbps GDDR6.

BTR uses Intel’s 10th generation flagship CPU, the i9-10990K which does not have this cache available so our results will probably be lower than what a gamer using a full Ryzen 5000 platform will achieve. In addition, we don’t have Smart Access Memory.

AMD’s Smart Access Memory is a new feature for the Radeon RX 6000 Series graphics cards that enables additional memory space to be mapped to the base address register resulting in performance gains for select games when paired with an AMD Ryzen 5000 Series processor or with some Ryzen 3000 series CPUs. Using PCIe, the Base Address Register (BAR) defines how much GPU memory space can be mapped. Without using Smart Access Memory, CPUs can generally access up to 256MB of GPU memory restricting performance somewhat.

NVIDIA has worked with its partners and with Intel to enable Resizable BAR which currently is enabled for the EVGA Z490 FTW motherboard but it only works for GeForce cards. When we tried to enable it for the RX 6600 XT, our PC refused to boot after following AMD’s instructions using a clean installation of Windows. So we disabled it and tested all of our video cards and games without Resizable BAR.

The Test Bed

BTR’s test bed consists of 32 games and 3 synthetic game benchmarks at 1920×1080 and 2560×1440, as well as SPEC, workstation, and GPGPU benchmarks. Our latest games include Chernobylite and F1 2021. The testing platform uses a recent installation of Windows 10 64-bit Pro Edition, and our CPU is an i9-10900K which turbos all 10 cores to 5.1/5.0GHz, an EVGA Z490 FTW motherboard, and 32GB of T-FORCE Dark Z DDR4 at 3600MHz. The games, settings, and hardware are identical except for the cards being compared.

First, let’s take a closer look at the new PowerColor Red Devil RX 6600 XT.

A Closer Look at the Red Devil RX 6600 XT

Although the Red Devil RX 6600 XT advertises itself as a premium 7nm 8GB vRAM-equipped card on AMD’s RDNA 2 architecture which features 1080P and PCIe 4.0, the cover of the box favors stylized imagery over text.

The back of the box touts key features which now include HDMI 2.1 VRR, ray tracing technology, FidelityFX, and VR Ready Premium as well as states its 600W power and system requirements. AMD’s technology features are highlighted and the box features PowerColor’s custom cooling solution, Dual-BIOSes, RGB software and output LEDs, and a solid backplate with the Red Devil logo that also lights up.

Opening its very well-padded box, we see a quick installation guide, a RGB LED cable, and an invitation to join PowerColor’s Devil’s Club.

The Red Devil RX 6600 XT is a dual-fan card. Turning the Red Devil over (below) we see a solid backplate that features the devil logo that also lights up.

The Red Devil RX 6600 XT is a medium-sized dual-fan card (251mm long x 133mm tall x 54mm thick) in a 2 slot design which is quite handsome with PowerColor’s colors and even more striking with the RGB on.There is also a switch to choose between the default overclock (OC) BIOS and the Silent BIOS (above, right). Using the OC BIOS the card has a 145W power target and using the Silent BIOS it has a 135W power target. We didn’t bother with the Silent BIOS as the card is very quiet using the OC BIOS, but it is good to have in case a flash goes bad.

The Red Devil uses one 1×8-pin and 1×6-pin PCIe connections while the reference version uses 1×8-pin. We would suggest that with the current voltage limitations and low power draw, the extra connector is probably not really necessary even for overclocking unless the end user circumvents the power restrictions using MPT at their own risk. Looking at the edges, we can see it is all heatsink fins for cooling as is typical of Red Devil cards, and we expect it to run cool.

Above, the PowerColor Red Devil RX 6600 XT’s other end also lights up giving the card an aggressive look.

The Red Devil’s RX 6600 XT’s connectors include 3 DisplayPorts and 1 HDMI connector. There is an LED that illuminates this panel for making easier connections in the dark.

The Red Devil looks great when it is running in a PC.

The specifications look good and the Red Devil itself looks great with its default RGB bright red contrasting with the black backplate and its aggressively lit-up front end perhaps is stylistically reminiscent of an automotive grill or perhaps teeth. The end user may enhance and coordinate the RGB colors by connecting to the motherboard using a supplied aRGB (5v 3-pin) connector using the DevilZone RGB software.

Let’s check out its performance after we look over our test configuration and more on the next page.

Test Configuration – Hardware

  • Intel Core i9-10900K (HyperThreading/Turbo boost On; All cores overclocked to 5.1GHz/5.0Ghz. Comet Lake DX11 CPU graphics)
  • EVGA Z490 FTW motherboard (Intel Z490 chipset, v1.9 BIOS, PCIe 3.0/3.1/3.2 specification, CrossFire/SLI 8x+8x), supplied by EVGA
  • T-FORCE DARK Z 32GB DDR4 (2x16GB, dual channel at 3600MHz), supplied by Team Group
  • Red Devil RX 6600 XT 8GB, factory settings and overclocked, on loan from PowerColor
  • Red Devil RX 6700 XT 12GB, factory settings and overclocked, on loan from PowerColor
  • ASUS TUF Gaming X3 RX 5600 XT 6GB, stock settings, on loan from ASUS
  • Radeon RX 5700 XT 8GB Anniversary Edition, stock AE clocks.
  • EVGA RTX 3060 Black 12GB, stock clocks, on loan from EVGA
  • RTX 3060 Ti Founders Edition 8GB, stock clocks, on loan from NVIDIA
  • 2 x 1TB Team Group MP33 NVMe2 PCIe SSD for C: drive; one for AMD and one for NVIDIA
  • 1.92TB San Disk enterprise class SATA III SSD (storage)
  • 2TB Micron 1100 SATA III SSD (storage)
  • 1TB Team Group GX2 SATA III SSD (storage)
  • 1GB T-FORCE Delta MAX SSD (storage), supplied by Team Group
  • ANTEC HCG1000 Extreme, 1000W gold power supply unit
  • Samsung G7 Odyssey (LC27G75TQSNXZA) 27″ 2560×1440/240Hz/1ms/G-SYNC/HDR600 monitor
  • DEEPCOOL Castle 360EX AIO 360mm liquid CPU cooler
  • Phanteks Eclipse P400 ATX mid-tower (plus 1 Noctua 140mm fan)

Test Configuration – Software

  • Adrenalin 2021 Edition 21.7.1 press drivers used for the RX 6600 XT and 21.7.2 used for the other Radeons except for 21.2.3 used for the RX 5700 XT.
  • GeForce 471.41 for the RTX 3060 and the RTX 3060 Ti.
  • High Quality, prefer maximum performance, single display, set in the NVIDIA control panel; Vsync off.
  • All optimizations are off, Vsync is forced off, Texture filtering is set to High, and Tessellation uses application settings in the AMD control panel.
  • AA enabled as noted in games; all in-game settings are specified with 16xAF always applied
  • Highest quality sound (stereo) used in all games
  • All games have been patched to their latest versions
  • Gaming results show average frame rates in bold including minimum frame rates shown on the chart next to the averages in a smaller italics font where higher is better. Games benched with OCAT show average framerates but the minimums are expressed by frametimes (99th-percentile) in ms where lower numbers are better.
  • Windows 10 64-bit Pro edition; latest updates. DX11 titles are run under the DX11 render path. DX12 titles are generally run under DX12, and multiple games use the Vulkan API.
  • Latest DirectX

Games

Vulkan

  • DOOM Eternal
  • Red Dead Redemption 2
  • Ghost Recon: Breakpoint
  • World War Z
  • Strange Brigade
  • Rainbow 6 Siege

DX12

  • F1 2021
  • Resident Evil Village
  • Hitman 3
  • Cyberpunk 2077
  • DiRT 5
  • Godfall
  • Call of Duty Black Ops: Cold War
  • Assassin’s Creed: Valhalla
  • Watch Dogs: Legion
  • Horizon Zero Dawn
  • Death Stranding
  • Tom Clancy’s The Division 2
  • Borderlands 3
  • Metro Exodus & Metro Exodus Enhanced Edition
  • Civilization VI – Gathering Storm Expansion
  • Battlefield V
  • Shadow of the Tomb Raider
  • Forza 7

DX11

  • Chernobylite
  • Days Gone
  • Crysis Remastered
  • Destiny 2 Shadowkeep
  • Total War: Three Kingdoms
  • Far Cry New Dawn
  • Assetto Corsa: Competitione
  • Grand Theft Auto V

Synthetic

  • TimeSpy (DX12)
  • 3DMark FireStrike – Ultra & Extreme
  • Superposition
  • Heaven 4.0 benchmark
  • AIDA64 GPGPU benchmarks
  • Blender 2.931 benchmark
  • Sandra 2021 GPGPU Benchmarks
  • SPECworkstation3
  • SPECviewperf 2020

NVIDIA Control Panel settings

Here are the NVIDIA Control Panel settings.

Next the AMD settings.

AMD Adrenalin Control Center Settings

All AMD settings are set so that all optimizations are off, Vsync is forced off, Texture filtering is set to High, and Tessellation uses application settings. All Navi cards are capable of high Tessellation unlike earlier generations of Radeons.

Anisotropic Filtering is disabled by default but we always use 16X for all game benchmarks.

Let’s check out overclocking, temperatures and noise next.

Overclocking, temperatures and noise

We spent a lot of time overclocking the Red Devil RX 6600 XT for this review. The Red Devil is factory clocked higher than the reference specifications using its OC BIOS. While the reference Radeon RX 6600 XT offers a Game clock up to 2359MHz and a Boost clock of 2589MHz, the PowerColor Red Devil game clocks up to 2428MHz and boosts to 2607MHz.

Above are the reference RX 6600 XT Wattman default settings which include leaving the power limit at default. The performance didn’t matter whether the power limit was set to default or higher even when overclocked. Although the Red Devil boosts to 2607MHz, we typically saw clocks at around 2575MHz and the GPU stayed cool. The fan speeds are not tracked by Wattman but they remained low and we could not hear them over our other case fans.

The Wattman auto overclock feature is useless as it gave an extremely low overclock so we used trial and error to find Red Devil’s maximum performance at the edge of stability. We settled on increasing the memory to 115% (2284MHz) and increasing the core clock by 7% (2776MHz) as below.

At maximum overclock, the clocks run from 2686MHz to a peak of 2720MHz, but this time the temperatures drop below 60C as the fan speeds increase. Even while overclocked to the max, the Red Devil remains very quiet and cool with power consumption just approaching 140W.

There is a small performance increase from overclocking the RX 6600 XT core by 7% and increasing the memory by 15%. Unfortunately, AMD has again locked all RX 6600 XT cards overclocking down in an attempt to maximize overall performance by limiting the voltage to 1150mV. We would also suggest that the RX 6600 XT is rather voltage constrained and the Red Devil could seriously benefit by more voltage. We suspect that some enthusiast gamers will use MPT (More Power Tool) and risk their warranty to gain a substantially higher Red Devil overclock although we cannot recommend it.

We believe that the Red Devil’s overclock will not degrade over time as its PCB components are fit to run all the time at the highest overclock settings – perhaps unlike entry level versions which are not engineered for ultimate maximum reliability.

Of course, many gamers will want to fine-tune their own overclock and undervolting is a possibility although at 140W the Red Devil RX 6600 XT is not a power hog. Check the overclocking chart in the next section for performance increases using ten key games.

Let’s head to the performance charts to see how the performance of the RX 6600 XT compares with five other cards.

Performance summary charts

Here are the performance results of 32 games and 3 synthetic tests comparing the factory-clocked 8GB Red Devil RX 6600 XT with the EVGA RTX 3060 Black 12GB (reference) and versus the RTX 3060 Ti FE 8GB at their factory set clocks. Three other cards are added for comparison in the Big Picture. The highest settings are used and are listed on the charts. The benches were run at 1920×1080 and at 2560×1440. Click on each chart to open in a pop-up for best viewing.

Most gaming results show average framerates in bold text, and higher is better. Minimum framerates are next to the averages in italics and in a slightly smaller font. The games benched with OCAT show average framerates but the minimums are expressed by frametimes in ms where lower numbers are better.

The Red Devil RX 6600 XT vs. the RTX 3060 & RTX 3060 Ti

The first set of charts show our three main competing cards. Column one represents the RTX 3060 EVGA Black (reference speed) version ($329) performance, column two is the Red Devil RX 6600 XT (no SEP/reference $379), and column three represents the RTX 3060 Ti FE ($399) performance.

The Red Devil RX 6600 XT is faster overall than the RTX 3060 EVGA Black (reference) version but it is still in the same class, trading blows depending on the games tested. Since we do not use Resizable BAR or have Smart Access Memory, we expect that some games would shift in favor of the Radeon using a Ryzen 5000 platform. However, it is outclassed by the $20 more expensive RTX 3060 Ti, winning no games against it.

Let’s see how the reference and Red Devil RX 6600 XT fit in with our expanded main summary chart, the “Big Picture”, comparing a total of six cards.

The Big Picture

Here is how the Red Devil 6600 XT fits into a larger chart with six cards. The ASUS RX 5600 XT is in column one, the RX 5700 XT (Anniversary Edition) is in column 2, the EVGA Black RTX 3060 is in column 3, the Red Devil RX 6600 XT is in Column 4, the RTX 3060 Ti FE is in column 5, and the Red Devil RX 6700 XT is in column 6.

We see that the RX 6600 XT is a fair upgrade from the RX 5600 XT, but it is hard to believe that AMD has increased the price by $100 over the last midrange 1080P generation. The RX 6600 XT basically trades blows with the RX 5700 XT which launched at $399. We have to wonder what AMD was thinking when they set their pricing so high.

Ray Traced Benchmarks

The Red Devil RX 6600 XT is next compared with our other two main competing cards when ray tracing is enabled in ten games. No DLSS or FSR technologies are used.

The RX 6600 XT gets outperformed overall when compared with the $50 less expensive RTX 3060 after ray tracing is enabled. However, AMD has recently introduced FidelityFX Super Resolution (FSR) which is their answer to NVIDIA’s DLSS.

FidelityFX Super Resolution (FSR)

Source: AMD

FSR improves performance by first rendering frames at a lower resolution and then by using an open-source spatial upscaling algorithm with a sharpening filter in an attempt to make the game look nearly as good as at native resolution. NVIDIA’s DLSS is a more mature temporal upscaling solution that uses AI/Deep Learning. With DLSS, data is accumulated from multiple frames and combined into the final image with the AI reconstruction component running on GeForce RTX Tensor cores.

In contrast, FSR is basically a post-process shader which also makes it easy for game developers to implement across all graphics cards and not just for Radeons. So far, there are about a dozen games that use it and we have tested three games that use FSR. Although Ultra FSR is not the equal of DLSS – and especially not of DLSS 2.0 Quality which rivals and sometimes improves on the native image – it is still a very solid non-AI/temporal upscaler that provides good performance improvements.

Ultra FSR is far more than a standard Lanczos implementation plus sharpening and it brings good value to Radeons (and for all video cards!) for higher “free” performance with a minimal hit to visuals. We were especially impressed with the Ultra FSR implementation in Chernobylite. Below is a performance comparison of Quality DLSS 2.0 versus Ultra FSR.

We see the RX 6600 XT improve its framerates using Ultra FSR to match the RTX 3060 which uses Quality DLSS in Chernobylite.

Again, we see solid performance improvements with Godfall and in Resident Evil Village using Ultra FSR.

Next we look at overclocked performance.

Overclocked benchmarks

These ten benchmarks were run with both Red Devil RX 6600 XT overclocked as far as it can go while remaining stable as described in the overclocking section. The Red Devil manually overclocked card results are presented first and the factory-clocked results are in the second column.

There is a reasonable performance increase from manually overclocking the Red Devil RX 6600 XT beyond its factory clocks from about 2% up to around 10%.

Let’s look at non-gaming applications next to see if the RX 6600 XT is a good upgrade from the other video cards we test starting with Blender.

Blender 2.931 Benchmark

Blender is a very popular open source 3D content creation suite. It supports every aspect of 3D development with a complete range of tools for professional 3D creation.

We benchmarked three Blender benchmarks which measure GPU performance by timing how long it takes to render production files. We tested our comparison cards using OpenCL for the Radeons and CUDA on GeForce – all running on the GPU instead of using the CPU.

For the following chart, lower is better as the benchmark renders a scene multiple times and gives the results in minutes and seconds.

OpenCL is not as well-optimized for Radeons compared with CUDA for GeForce.

Next, we move on to AIDA64 GPGPU benchmarks.

AIDA64 v6.32

AIDA64 is an important industry tool for benchmarkers. Its GPGPU benchmarks measure performance and give scores to compare against other popular video cards.

AIDA64’s benchmark code methods are written in Assembly language, and they are well-optimized for every popular AMD, Intel, NVIDIA and VIA processor by utilizing the appropriate instruction set extensions. We use the Engineer’s full version of AIDA64 courtesy of FinalWire. AIDA64 is free to to try and use for 30 days. CPU results are also shown for comparison.

Here are the Red Devil RX 6600 XT AIDA64 GPGPU results compared with an overclocked i9-10900K.

Here is the chart summary of the AIDA64 GPGPU benchmarks with five of our competing cards side-by-side.

The RX 6600 XT is a fast GPGPU card and it compares favorably with Ampere cards, being weaker in some areas and stronger in others, and it’s a solid improvement over the last generation RX 5600 XT. So let’s look at Sandra 2020 next.

SiSoft Sandra 2020

To see where the CPU, GPU, and motherboard performance results differ, there is no better tool than SiSoft’s Sandra 2020. SiSoftware SANDRA (the System ANalyser, Diagnostic and Reporting Assistant) is a excellent information & diagnostic utility in a complete package. It is able to provide all the information about your hardware, software, and other devices for diagnosis and for benchmarking. Sandra is derived from a Greek name that implies “defender” or “helper”.

There are several versions of Sandra, including a free version of Sandra Lite that anyone can download and use. Sandra 2021 is the latest version, and we are using the full engineer suite courtesy of SiSoft. Sandra 2020 features continuous multiple monthly incremental improvements over earlier versions of Sandra. It will benchmark and analyze all of the important PC subsystems and even rank your PC while giving recommendations for improvement.

We ran Sandra’s intensive GPGPU benchmarks and charted the results summarizing them.

In Sandra GPGPU benchmarks, since the architectures are different, each card exhibits different characteristics with different strengths and weaknesses. However, we see solid improvements of the RX 6600 XT over the RX 5600 XT.

SPECworkstation3 (3.0.4) Benchmarks

All the SPECworkstation3 benchmarks are based on professional applications, most of which are in the CAD/CAM or media and entertainment fields. All of these benchmarks are free except for vendors of computer-related products and/or services.

The most comprehensive workstation benchmark is SPECworkstation3. It’s a free-standing benchmark which does not require ancillary software. It measures GPU, CPU, storage and all other major aspects of workstation performance based on actual applications and representative workloads. We only tested the GPU-related workstation performance as checked in the image above.

Here are our raw SPECworkstation 3.0.4.summary and raw scores for the Red Devil RX 6600XT that were tested at 1900×1060.

Here are the Red Devil SPECworkstation3 results summarized and included in a chart of our five competing cards. Higher is better.

Using SPEC benchmarks, since the architectures are different, the cards each exhibit different characteristics with different strengths and weaknesses.

SPECviewperf 2020 GPU Benches

The SPEC Graphics Performance Characterization Group (SPECgpc) has released a 2020 version of its SPECviewperf benchmark last year that features updated viewsets, new models, support for both 2K and 4K display resolutions, and improved set-up and results management. We use 2K display resolution for midrange cards like the RX 6600 XT.

Here are the summary results for the Red Devil RX 6600 XT.

Here are SPECviewperf 2020 GPU Red Devil RX 6600 XT benchmarks summarized in a chart together with four other cards.

Again we see different architectures with different strengths and weaknesses. The Red Devil RX 6600 XT is significantly faster than the RX 5600 XT.

After seeing these benches, some creative users may upgrade their existing systems with a new card based on the performance increases and the associated increases in productivity that they require. The question to buy a new video card should be based on the workflow and requirements of each user as well as their budget. Time is money depending on how these apps are used. However, the target demographic for the Red Devil RX 6600 XT is primarily 1080P gaming for gamers.

Let’s head to our conclusion.

Final Thoughts

The Red Devil RX 6600 XT improves significantly over the RX 5600 XT and it trades blows with and overall it beats the RTX 3060 in multiple rasterized games. The Red Devil RX 6600 XT beats the last generation cards including the RX 5600 XT although it struggles with ray traced games compared with GeForce cards. We somewhat handicapped the RX 6600 XT by not being able to use Infinity Cache & Smart Access Memory and we expect that performance would be higher if we used a Ryzen 5000 platform.

FSR brings a great value to the RX 6600 XT as an alternative to DLSS, although it cannot quite match it in visual quality. We look forward to further improvements in FSR and hope many more games use it.

For Radeon gamers, the Red Devil RX 6600 XT is a good alternative to the RTX 3060 for the vast majority of modern PC games that use rasterization. However, the RX 6600 XT offers 8GB of GDDR6 to the 12GB of GDDR6 that the RTX 3060 is equipped with. The RTX 3060, although it has 12GB of vRAM, appears to be wasted for that card.

At its suggested price of $379, or $20 less than the RTX 3060 Ti, the reference RX 6600 XT offers much less value – if the GeForce can be found at all at SEP. PowerColor has promised that the supply of the RX 6600 XT will be plentiful, but we are skeptical. This same thing has been promised for Ampere cards where the stock is still trickling in and being purchased the instant it’s available from etailers that are not hesitating to mark the prices up to double the SEP.

We think that AMD has set pricing too high on the RX 6600 XT by about $50. If it sold for $329 like the RTX 3060, it would be a really good value. They seem to forget that the competing GeForce is much stronger in ray traced games – with over 60 games featuring DLSS – and that FSR is brand new with only a dozen games supporting it so far. At $100 more than what the RX 5600 XT launched at, AMD has jacked up the price of 1080P gaming – pandemic shortages or no shortages – and it is not a consumer friendly move. However, for practical terms – if the RX 6600 XT can be found at MSRP/SEP – it is a good value for now as most other competing cards are still selling for double MSRP.

PowerColor hasn’t set any pricing on the Red Devil RX 6600 XT allowing the resellers to set theirs. They claim that their margins are actually below their usual historical low double-digit (10-12%) for a new product. Unfortunately, it’s hard to recommend any card with no suggested price even though it is overclocked, very nicely equipped, and well-built over a well-designed reference version for $379. We wish that we could say that “PowerColor thinks their Red Devil is worth $30 more than the reference version” – and we would agree. But now there is no pricing frame of reference.

We recommend the Red Devil RX 6600 XT as a great choice out of multiple good choices, especially if you are looking for good looks with RGB, an exceptional cooler, and great performance for 1920×1080, PowerColor’s excellent support, and overall good value assuming that the stock and price stabilizes. We are convinced that PowerColor is an outstanding AMD AIB, and we never hesitate to recommend it to our friends. When we have a choice, we pick and have picked PowerColor video cards for our own purchases.

Let’s sum it up:

The Red Devil RX 6600 XT Pros

  • The PowerColor Red Devil RX 6600 XT is much faster than the last generation RX 5600 XT by virtue of new RDNA 2 architecture. It beats the RTX 3060 in many raster games and is a great ultra 1080P card that can handle 1440P with lower settings.
  • FSR is an awesome added value that can greatly improves performance without impacting visuals significantly.
  • The Red Devil RX 6600 XT has excellent cooling and it is a very quiet card even when overclocked to its maximum
  • The Red Devil has a very good power delivery system and dual-fan custom cooling design
  • Dual-BIOS give the user a choice of quiet with less overclocking, or a bit louder with more power-unlimited and higher overclocks. It’s also a great safety feature if a BIOS flash goes bad
  • FreeSync2 HDR eliminates tearing and stuttering
  • Infinity Cache & Smart Access Memory give higher performance with Ryzen 5000 platform
  • Customizable RGB lighting and a neutral color allow the Red Devil to fit into any color scheme using the DevilZone software program.

Red Devil RX 6600 XT Cons

  • Pricing. $379 for a midrange 1080P card is $100 more than AMD’s RX 5600 XT. And PowerColor has set no SEP
  • Weaker ray tracing performance than the RTX 3060

If they can be found at suggested pricing, the Red Devil RX 6600 XT is a good card choice for those who game at 1920×1080, and it represents a good alternative to the RTX 3060 albeit with weaker ray tracing performance. They are offered especially for those who prefer AMD cards and FreeSync2 enabled displays which are generally less expensive than Gsync displays; and Infinity Cache & Smart Access Memory are a real plus for gamers using the Ryzen 5000 platform.

If a gamer is looking for something extra beyond the reference version, the Red Devil RX 6600 XT is a very well made and handsome RGB customizable card that will overclock decently and last a long time without performance degradation.

The Verdict:

  • PowerColor’s Red Devil RX 6600 XT is a solidly-built good-looking RGB card with higher clocks out of the box than the reference version and it overclocks decently. It trades blows with and overall beats the RTX 3060 in many rasterized games. Although we have no price, it is a kick-ass RX 6600 XT. Hopefully there will be some solid supply and the market pricing will normalize after the cryptocurrency pandemic ends (relatively soon!).

The Red Devil RX 6600 XT offers a good alternative to the RTX 3060 for solid raster performance in gaming, and it also beats the performance of AMD’s last generation by a good margin. However, everything will depend on pricing and availability.

This is what PowerColor boldly stated to us last week:

“There will be plenty of cards in the channel and we will have our base model Fighting that starts at 379$ at launch!
No Scalping prices, eTailers will have enough cards, if they raise the prices, someone else will sell for less.”

Good advice! We hope there is good availability, and if so, we can recommend the Red Devil RX 6600 XT even if it is sold even at AMD’s inflated SEP pricing because the competing cards are mostly unavailable for even double their MSRP. Do not reward scalpers or etailers who sell at inflated prices and who do not deserve our business. We can outwait them.

Stay tuned, there is much more coming from BTR. This weekend we will return to VR with a performance evaluation comparing the Red Devil RX 6600 XT with the RTX 3060. And stay tuned for Rodrigo’s upcoming 471.68 driver performance analysis!

Happy Gaming!

]]>
AMD Launches FidelityFX Super Resolution with Adrenalin 21.6.1 https://babeltechreviews.com/amd-launches-fidelityfx-super-resolution-with-adrenalin-21-6-1/ Tue, 22 Jun 2021 13:44:27 +0000 /?p=23974 Read more]]> AMD Launches FidelityFX Super Resolution with Studio and Game Support

Our friends at AMD have just launched the much anticipated FSP (FidelityFX Super Resolution) which is designed as an open source competitor to NVIDIA’s DLSS to boost framerates without impacting visuals. You can bet that BTR will review it for our readers! Here is AMD’s press release summary:

Today, AMD launched FidelityFX Super Resolution (FSR), its cutting-edge, open-source spatial upscaling technology, designed to boost framerates and deliver a high-quality, high-resolution gaming experience. More than 40 developers plan to support and integrate FSR into top titles and game engines. And beginning today, FSR is available in seven exciting titles: Anno 1800, Evil Genius 2, Godfall, Kingshunt, 22 Racing Series, Terminator: Resistance and The Riftbreaker, with additional games expected to provide support by the end of 2021.

FSR is supported on more than 100 AMD GPUs and processors, as well as on competitive graphics solutions, to benefit all gamers. Providing up to 2.4X higher performance at 4K across select titles compared to native resolution, FSR was designed for easy integration into new and existing titles across a wide range of platforms.

FSR is expected to be broadly available to game developers in mid-July 2021 as a free download for the AMD GPUOpen community. More information about FSR, including images and a comprehensive list of supporting developers and titles, can be found here. You can download the latest version of Radeon Software here bringing FSR support for select titles. Additionally, you can also learn more in the following press release here and blog post here.

]]>